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Interest centers on many moment inequalities which is linked to
partial identification literature.

The number of many moment inequalities are denoted by p, which
will be larger than sample size n.

Some examples: market structure model of Ciliberto and Tamer
(2009), discrete choice model with endogeneity of
Chesher-Rosen-Smolinski (2013), dynamic model of imperfect
competition of Bajari-Benkard-Levin (2007).

The first solution to this problem is proposed by Chernozhukov,
Chetverikov, Kato (2014).

This is a major development since the critical values for any test are
not developed and face immense difficulty due to high dimensional
nature of the problem.
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Let X1, · · · ,Xn be a sequence of iid random vectors in Rp,
Xi = (Xi1, · · · ,Xip)′.

For 1 ≤ j ≤ p, write µj = E [X1j ]

Chernozhukov etal (2014) test the null of H0 : µj ≤ 0 versus the
alternative H1 : µj > 0.

Mehmet Caner PARTIAL IDENTIFICATION AUGUST 2015 3 / 25



1. Testing in Many Moment Inequality Framework 2. Details of Two step Testing 3. Our Method: One Sided Thresholded Lasso or Thresholded Least Squares Estimator 4.Simulation

Define µ̂j = n−1 ∑n
i=1 Xij , σ̂2

j = n−1 ∑n
i=1(Xij − µ̂j )2.

Chernozukov etal (2014) proposed the following test statistic

T = max{1≤j≤p}

√
nµ̂j

σ̂j
. By abusing a bit statistics, we can call their

test maxt.

Reject H0 when T > cval , where cval is a critical value that is chosen
to give certain size.

The issue is getting cval such that we have a certain size in cases
when p > n, regular central limit theorem type results do not suffice.

Chernozukov etal proposed two methods: a) self normalization based
b) bootstrap based techniques to get such cval .
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IDEA FOR TESTING:
Chernozukov etal (2014)

This will be a two step process.

In the first step, maxt test will be conducted to get rid of large
inequalities on the left side (negatives). Here a critical value will be
used, cval1.

After getting rid of these, critical value of the second step will be
formed by use only the inequalities that are larger than the ones in
the first step. Lets denote this critical value cval2

In the second step, maxt test will again be conducted, and we will use
cval2 for testing.

Now we will describe how cval1, cval2 are formed.
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First step critical values of Chernozukov etal (2014) are (using
moderate deviation inequality for self normalized sums), for βn → 0
when n→ ∞.
Let Φ−1(.) denote the quantile of the distribution function of
standard normal.

cval1 =
Φ−1(1− βn/p)√

1−Φ−1(1− βn/p)2/n
.

They form the following set that gets rid of large negative inequalities

ĴSN = {j ∈ {1, · · · , p} :
√
nµ̂j/σ̂j > −2cval1}.

Denote the cardinality of the set ĴSN as k̂, so k̂ = |ĴSN |.
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Second Step Critical Value:
a) if k̂ = 0, cval2 = 0.
b) if k̂ ≥ 1, then

cval2 =
Φ−1(1− (α− 2βn)/k̂)√

1−Φ−1(1− (α− 2βn)/k̂)2/n
.
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Theorem 4.2 (Chernozhukov etal ) (2014). Suppose that
supn βn ≤ α/3, and there exist constants 0 < c1 < 1/2, C1 > 0 such that

Mn,3log
3/2(p/βn) ≤ C1n

1/2−c1 , B2
n log

2(p/βn) ≤ C1n
1/2−c1 .

Then there exist positive constants c, C depending on α, c1,C1 such that
under H0

P(T > cval2) ≤ α + Cn−c ,

where the result is uniform with respect to common distribution of Xi

where finite second moment and positive variance conditions and the
above moment-p tradeoff conditions are verified.
Note that Mn,3 = max1≤j≤p(E |Z1j |3)1/3, and Z1j = (X1j − µj )/σj .
B2
n = (E [max1≤j≤p Z 4

1j ])
1/2.
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Multiplier Bootstrap Based Critical Values(Chernozhukov etal,
2014):
Step 1. Generate cval1 according to the following algorithm.
i) Draw independent std normal revs ε1, · · · , εn independent of X ′s.
ii) Construct the multiplier bootstrap test statistic

WMB = max
1≤j≤p

n−1/2 ∑n
i=1 εi (Xij − µ̂j )

σ̂j
.

iii) Calculate cval1 as the conditional 1− βn quantile of WMB given the
data.
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Step 2: Delete large negative inequalities:

Define the following set:

ĴMB = {j ∈ 1, · · · , p :
√
nµ̂j/σ̂j > −2cval1}. (1)
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Bootstrap Algorithm to create cval2:

Generate independent std normal revs ε1, · · · , εn independent of data
X.

Construct the multiplier bootstrap test statistic

WĴMB
= max

j∈ĴMB

n−1/2 ∑n
i=1 εi (Xij − µ̂j )

σ̂j
.

If ĴMB is empty, set cval2 = 0

Otherwise cval2 is the (1− (α− 2βn)) conditional quantile of WĴB
given X .
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Assumption: Suppose there exist positive constants 0 < c1 < 1/2
and C1 > 0 such that

(M3
n,3 ∪M2

n,4 ∪ Bn)
2log7/2(pn) ≤ C1n

1/2−c1 .

Theorem 4.4. Chernozhukov etal 2014. (Validity of two step MB
method). Suppose that above assumption is satisfied, and
supn βn < α/2, log(1/βn) ≤ C1logn. Then there exist positive
constants c, C depending only on c1,C1 such that under H0

P(T > cval2) ≤ α + Cn−c .

Note that the results are uniform over the distribution of Xi for which
finite second moments, and positive variance are verified with the
assumption above.
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Difference Between Two Methods

Our method uses the same test statistic as Chernozukov etal (2014).

But we choose the critical value in step 1 (cval1) differently.

Chernozhukov etal (2014) use the same max test to eliminate the
large negative inequalities in step 1.

We will use one sided thresholded lasso or thresholded least squares
to eliminate large negative as well as moderate negative inequalities in
our step 1.

Instead of pretesting we are estimating in the first step.

Our aim is to have the same size, but gain from power by adjusting
critical values in step 1 differently.
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Slight Generalization of The Previous Model:

H0 : µj ≤ 0, ∀j = 1, · · · , p and µj = 0∀j = p + 1, · · · , k .

H1 : µj > 0, for some j = 1, · · · , p or µj 6= 0 for some j = p + 1, · · · , k .

Test statistics: Simple Generalization of maxt test of Chernozhukov
etal (2014)

Tn = max{ max
j=1,··· ,p

√
nµ̂j

σ̂j
, max
s=p+1,··· ,k

√
n|µ̂s |
σ̂s

}.
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Step 1: Involves lasso estimation

1

µ̂L = argmint∈Rp{(µ̂− t)′Ŵ (µ̂− t) + λn‖Ŵ 1/2t‖1}, (2)

where

2 µ̂ = (µ̂1, · · · , µ̂j , · · · , µ̂p)′. Remember that µ̂j = n−1 ∑n
i=1 Xij .

3 Ŵ ≡ diag{1/σ̂2
j }

p
j=1, which is a p × p diagonal matrix.

4 λn is a positive tuning parameter, that converges to zero.

5 Form the following set:

ĴL ≡ {j = 1, · · · , p : µ̂j ,L/σ̂j ≥ −λn}.

So inequalities in that set will be kept in forming the critical value for
the test in the second step.
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Duality between Lasso and Least squares in our case:

µ̂L,j = sgn(µ̂j )[|µ̂j | − σ̂j
λn

2
]+. (3)

This is shown by Buhlmann-van de Geer (2009), equation (2.5).

We can write the set for binding moments, (instead of ĴL) via least
squares thresholding

ĴLS ≡ {j = 1, · · · , p : µ̂j/σ̂j ≥ −
3

2
λn}.

This is a major computational advantage over lasso based set.
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Step 2: Now we repeat the same bootstrap procedure of Chernozukov etal
(2014) with our set of inequalities and equalities

1 Generate independent std normal revs ε1, · · · , εp independent of the
data X .

2 Construct the multiplier bootstrap test statistic, which is a simple
extension of Chernozhukov etal (2014) in form, but use different set
of inequalities,

WMB
L = max{max

j∈ĴL

n−1/2 ∑n
i=1 εi (Xij − µ̂j )

σ̂j
, max
s=p+1,··· ,k

n−1/2 ∑n
i=1 εi (Xis − µ̂s )

σ̂s
}.

3 Calculate the conditional (1− α) quantile of WMB
L , and call it

cvallasso .

Mehmet Caner PARTIAL IDENTIFICATION AUGUST 2015 17 / 25



1. Testing in Many Moment Inequality Framework 2. Details of Two step Testing 3. Our Method: One Sided Thresholded Lasso or Thresholded Least Squares Estimator 4.Simulation

Theorem: Under comparable standard regularity assumptions on moments
as in Chernozukov etal (2014) and under H0,

P(Tn > cvallasso) ≤ α + o(1),

uniformly in the distribution of the data that satisfies regularity
assumptions.
Our choice of λn is guided by theory. We put a simple plug in estimate of
λn as

λn =
C

n1/2

(
M2

n,3

n1/3 −
1

n

)−1/2

,

where C ≥ 4, and we use an estimate max1≤j≤p(n−1 ∑n
i=1 |Xij |3)1/3 for

Mn,3.
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SETUP:

we tried 1000 monte carlo iterations, sample size is n = 400 as in
Chernozhukov etal (2014), p = 200, 500, 1000 as in their case.

Same setup as theirs
Xi = µ + A′εi ,

where Σ = A′A, εi = (εi1, · · · , εip)′ are iid random variables with
Eεi = 0p, and variance of these errors is 1.

Here as they did we consider εi ,j ∼ t4/
√

2, we also did uniform
random errors, and this is in paper now.

In the slides we show four specific designs. Number of bootstrap
iterations is also 1000.
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DESIGNS:

1 1. µj = −0.8 for 90% of p (specifically j > p ∗ 0.1) and the rest 10%
of the moments are zero. Null is true, and Σ = ρ|j−k |, ρ takes values
0, 0.5, 0.9. Design 4 in Chernozukov etal (2014).

2 2. µj = −0.3 for 0% of p (specifically j > p ∗ 0.1) and the rest 10%
is µj = 0.05 which is violation of the null. New design. Same
correlation structure as 1.

3 3. µj = −0.5 for 0% of p (specifically j > p ∗ 0.1) and the rest 10%
is µj = 0.05 which is violation of the null. New design. Same
correlation structure as 1.

4 4.µj = −0.75 for 0% of p (specifically j > p ∗ 0.1) and the rest 10%
is µj = 0.05 which is violation of the null. Design 8 in Chernozhukov
etal (2014). Same correlation structure as 1.
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Table 1: Design 1, Size of the test: 5% nominal size
p ρ MB Lasso MB MBH MB2S

0 4.80 0.20 4.60 4.60
200 0.5 4.90 0.80 4.50 4.50

0.9 4.80 0.60 4.70 4.70

0 4.50 0.60 4.30 4.30
500 0.5 5.60 0.60 5.50 5.50

0.9 5.20 0.70 5.20 5.20

0 5.90 0.60 5.30 5.30
1000 0.5 5.10 0.60 4.80 4.80

0.9 5.00 0.70 4.90 4.90

Note: MB Lasso is our technique which uses lasso in step 1, and then uses
multiplier bootstrap, MB, MBH, MB2S are techniques of Chernozhukov

etal (2014) which uses multiplier bootstrap only 1 step procedure, and self
normalization in step 1, multiplier bootstrap in step 2, and both multiplier

bootstraps in steps 1-2 respectively.
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Table 2: Design 2, Power of the test: µj = −0.3 for 90% of moments
10% of the moments, µj = 0.05

p ρ MB Lasso MB MBH MB2S

0 51.30 14.20 14.00 14.00
200 0.5 45.70 12.70 12.60 12.60

0.9 30.10 8.30 8.20 8.30

0 61.30 16.20 15.90 15.90
500 0.5 55.10 14.60 14.50 14.50

0.9 36.50 11.00 10.90 10.90

0 65.10 19.30 18.90 18.90
1000 0.5 61.60 18.20 17.80 17.80

0.9 44.10 13.70 13.40 13.50

Note: MB Lasso is our technique which uses lasso in step 1, and then uses
multiplier bootstrap, MB, MBH, MB2S are techniques of Chernozhukov
etal (2014) which uses multiplier bootstrap only 1 step procedure, and self
normalization in step 1, multiplier bootstrap in step 2, and both multiplier
bootstraps in steps 1-2 respectively.
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Table 3: Design 3, Power of the test: µj = −0.5 for 90% of moments
10% of the moments, µj = 0.05

p ρ MB Lasso MB MBH MB2S

0 52.00 14.20 28.40 31.20
200 0.5 46.40 12.70 26.60 30.20

0.9 33.10 8.30 16.10 20.70

0 61.70 16.20 30.70 34.20
500 0.5 55.80 14.60 27.40 29.90

0.9 38.60 11.00 17.20 21.00

0 65.20 19.30 31.50 35.50
1000 0.5 61.90 18.20 29.00 33.10

0.9 44.70 13.70 19.50 22.90

Note: MB Lasso is our technique which uses lasso in step 1, and then uses
multiplier bootstrap, MB, MBH, MB2S are techniques of Chernozhukov

etal (2014) which uses multiplier bootstrap only 1 step procedure, and self
normalization in step 1, multiplier bootstrap in step 2, and both multiplier

bootstraps in steps 1-2 respectively.
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Table 4: Design 4, Power of the test: µj = −0.75 for 90% of moments
10% of the moments,µj = 0.05

p ρ MB Lasso MB MBH MB2S

0 52.00 14.20 51.30 51.40
200 0.5 46.40 12.70 45.40 45.40

0.9 33.10 8.30 32.70 32.70

0 61.70 16.20 61.10 61.00
500 0.5 55.80 14.60 54.50 54.70

0.9 38.60 11.00 37.90 37.90

0 65.30 19.30 64.40 64.30
1000 0.5 61.90 18.20 61.20 61.30

0.9 44.70 13.70 44.00 44.20

Note: MB Lasso is our technique which uses lasso in step 1, and then uses
multiplier bootstrap, MB, MBH, MB2S are techniques of Chernozhukov

etal (2014) which uses multiplier bootstrap only 1 step procedure, and self
normalization in step 1, multiplier bootstrap in step 2, and both multiplier

bootstraps in steps 1-2 respectively.
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Final thoughts after Simulations:

Chernozukov etal (2014) critically depends on choice of βn for the
size and the power.

Their second step uses (1− α + 2βn) quantile of the distribution
(either self normalization based, or bootstrap based).

So if βn is small, then this helps in power thru full coverage, but small
βn lets also go far left in the first step by adjusting critical values far
to the left and keeping a lot of large negative inequalities and
reducing the power.

So βn choice is a tradeoff between first and second step critical values.
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Final Thoughts after Simulations:

Our method relies on λn choice.

First step involves thresholded least squares estimation, so no testing
there.

We use (1− α) quantiles instead of (1− α + 2βn) of Chernozhukov
etal (2014) method in step 2, so we gain from power there.

Small λn helps us to truncate near 0, so we can only keep equalities
and some small negative inequalities. This increases power.

But small λn in lasso also causes overfit, may create artificial negative
inequalities, and that may reduce power.

However, we show that via thresholded lasso we can prevent overfit
asymptotically, and come up with a λn expression that ties moments
and sample size to λn.
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